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Analytical solution for the modified nonlinear Schrödinger equation
describing optical shock formation
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We present an exact analytical solution by the use of an ansatz method for the modified nonlinear Schro¨-
dinger equationiU z1

1
2 sUtt1N2uUu2U1 isN2(uUu2U)t50, describing the propagation of light pulses in

optical fibers. The inclusion of the termisN2(uUu2U)t in the usual nonlinear Schro¨dinger equation arises from
an intensity-dependent group velocity and produces a temporal pulse distortion leading to the development of
an optical shock. Previous work@Xu Bingzhen and Wang Wenzheng, Phys. Rev. E51, 1493~1995!# using the
traveling-wave method does not exhibit this important physical picture.@S1063-651X~98!05004-1#

PACS number~s!: 42.81.Dp, 42.50.Vk, 42.65.Tg, 03.65.Ge
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I. INTRODUCTION

A fascinating manifestation of fiber nonlinearity occurs
the anomalous-dispersion regime where the fiber can sup
optical solitons through an interplay between the dispers
and nonlinear effects. Thesoliton refers to special kinds o
waves that can propagate undistorted over long distances
remain unaffected after collision with each other. In the co
text of optical fibers, solitons are not only of fundamen
interest but also have potential application in the field
optical fiber communications.

The nonlinear Schro¨dinger equation~NLSE! has been em-
ployed to explain a variety of effects in propagation of puls
in optical fibers, although it only includes self-phase mod
lation ~SPM! and group velocity dispersion~GVD! @1#. How-
ever, in other cases a generalized NLSE has been requir
account for observations not explained by the NLSE. T
generalized NLSE includes high-order nonlinear and disp
sive terms. In some particular cases, one can include
one additional term in the NLSE. In the case of optical fibe
when the first derivative of the slowly varying part of no
linear polarization is added, it leads to a self-steepening
the pulse edge in the absence of dispersion and this mod
NLSE ~MNLSE! still explains or predicts new nonlinea
phenomena@12#.

The propagation of a temporal optical soliton in the pr
ence of the self-steepening term can be described by
MNLSE @2#

iU z1 1
2 sUtt1N2uUu2U1 isN2~ uUu2U !t50, ~1!

whereU(z,t) represents a normalized complex amplitude
the pulse envelope,z is a normalized distance along the fibe
t is the normalized time within the frame of the referen
moving along the fiber at the group velocity,s561 for the
normal and anomalous regime, respectively, the physical
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nificance ofN is that its integer values are related to t
soliton order. In Eq.~1!, without the self-steepening term
transforms in the conventional NLSE. Here we will be co
cerned only with the fundamental soliton (N51).

The self-steepening of the pulse edge arises from
intensity-dependent group velocity and produces a temp
pulse distortion and an asymmetry in the pulse spectr
Self-steepening can develop optical shock, understood a
extremely sharp rear edge. Early work on this subject is
scribed in Refs.@3–8#, while more recent work has bee
reported in Refs.@9–14#. It should be pointed out that optica
shocks also reveal themselves as a result of the inter
between SPM and GVD, as recently demonstrated in opt
fibers through the phenomena of optical wave breaking@5#.
A characteristic of optical shocks arising due to SPM a
GVD alone is that it occurs in both leading and trailing ed
of the pulse, symmetrically, unlike the shock induced
self-steepening, which is asymmetric in nature. In gene
the MNLSE including the self-steepening term has been a
lytically solved @6,12#. Recently exact analytical solution
for Eq. ~1! were given in Ref.@15#. Their traveling-wave
method is based on a choice for the complex amplitu
U(z,t) of the wave in which its modulus and phase a
dependent on the variableh5t2a0z. Although they found
all symmetric solutions for the given boundary condition
their results do not give the asymmetric solutions that ar
natural consequence of the self-steepening term and that
to shock formation@16–20#.

In this paper we show that the ansatz method is m
powerful than the traveling-wave method for the study of t
MNLSE. As we shall show, the analysis of the different s
lutions will be made through the study of the ‘‘potenti
function’’ as occurs in the traveling-wave method. The d
ference is that in our case we can obtain the asymme
solution as well as the symmetric one and this is done in b
optical regimes~anomalous and normal!. It is important to
mention that our approach is suitable for obtaining so
symmetric solutions~such as that of Ref.@6#! but not all
~such as that of Ref.@15#!. Finally, for a particular class o
the solutions found in this paper, we calculate the criti
distance for the shock formation.
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II. EXACT SOLUTION OF THE MODIFIED NONLINEAR
SCHRÖDINGER EQUATION

Now we proceed with the analysis of Eq.~1! by separat-
ing U(z,t) into the real amplitudeV(z,t) and phasef(z,t)
according toU5V exp(if). We split Eq.~1! into its real and
imaginary parts, yielding

Vfz1 1
2 s~Vtt2Vft

2!2V31sV3ft50, ~2!

Vz2 1
2 s~2Vtft1Vftt!13sV2Vt50. ~3!

Equations~2! and ~3! were solved perturbatively in Ref
@8# by a power series in the parameters, and in Ref.@6#
making suitable assumptions about the initial frequen
scanning~or chirp!.

SPM gives rise to an intensity-dependent phase s
while the pulse shape governed byuU(z,t)u2 remains un-
changed@2#. SPM-induced spectral broadening is a con
quence of the dependence off(z,t). This can be understoo
by noting that a temporally varying phase implies that
instantaneous optical frequency differs across the pulse f
its central value. Self-steepening leads to an asymmetr
the SPM-broadened spectra and of the trailing edge of
pulse that eventually creates an optical shock analogou
the development of an acoustical shock on the leading e
of a sound wave. The critical distance corresponding to
shock formation can be obtained by requiring th
@ uU(z,t)u2#t be infinite at the shock location. For femtose
ond initial pulse widthT0,100 fs and peak power of th
incident pulse P0>1 kW, as a result, significant self
steepening of the pulse can occur over a few-centimeter-
fiber @6#.

To solve the coupled pair of Eqs.~2! and~3! we make the
ansatz

ft5a01a2V2, ~4!

wherea0 anda2 are constants that will be determined late
With the ansatz~4! we decouple the pair of equations~2! and
~3! that now can be solved exactly. First we make so
simple manipulations in order to write Eq.~3! in the form

~V2!z1@~ 3
2 sV22sft!V

2#t50. ~5!

Second we substitute Eq.~4! in Eq. ~5! to find

~V2!z1@2sa01~22sa213s!V2#~V2!t50, ~6!

where we used the property (V4)t52V2(V2)t . From Eq.~6!
obtain directly the general solution forV as

V~z,t!5 f $t2@2sa01~22sa213s!V2#z%, ~7!

where f is an arbitrary function determined by the initi
form of the pulse envelope. As we can see from Eq.~4! the
frequency scanning of our solution is nonlinearly modula
during the pulse propagation, as opposed to the ordinary
ton solution where it is zero.

In order to integrate Eq.~2! we need now calculateft .
This can be done from Eqs.~4! and ~7! yielding for f(z,t)
y
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f~z,t!5f0~z!1a0t1a2Eh
f 2~h8!dh8

1 1
2 a2~22sa213s!z f 4~h!, ~8!

wheref0(z) is an integration constant andh is given by@see
Eq. ~7!#

h~z,t!5t2@2sa01~22sa213s!V2~z,t!#z. ~9!

Finally we have forfz from Eqs.~8! and ~9!

fz5k1a2@sa02~ 3
2 s2sa2!V2#V2, ~10!

where we took for conveniencef08(z)5k, with k constant.
We insert Eqs.~4!, ~7!, and~10! in Eq. ~2! for we obtain

the initial form f (t) making z50 to get the second-orde
equation forV(z50,t)5 f (t),

Vtt2sa2~s2sa2!V522s~12sa0!V31s~2k2sa0
2!V50.

~11!

Equation~11! can be integrated once and put into a for
analogous to the equation of motion of a particle in a o
dimensional potential field

1
2 ~Vt!

21P~V!50, ~12!

where the potential fieldP(V) is given by

P~V!52 1
6 sa2~s2sa2!V6

2 1
2 s~12sa0!V41 1

2 s~2k2sa0
2!V21d.

Hered is an integration constant, andV25W. Equation~12!
can be rewritten as

Wt
21P~W!50, ~13!

where

P~W!5W~aW31bW21gW1d!,

with a[2 4
3 sa2(s2sa2), b[24s(12sa0), and g

[4s(2k2sa0
2).

III. RESULTS

In the following we show how to obtain the general sol
tion of Eq. ~13! and give some possible solutions fordÞ0.
For different kinds of root distributions of the polynomia
P(W), there are different kinds of solutions for Eq.~13!.
BecauseW5V2.0 and all of the coefficients inP(W) are
real, we will discuss the real solution of Eq.~13! only.

~1! a.0.
~a! All four roots of the polynomialP(W) are real.
~i! There is a single rootW50 and a triple root

W5a. In this case ‘‘potential function’’P(W) can be re-
written as

P~W!5aW~W2a!3. ~14!

P(W),0, when 0,W,a. So there is a real solution for Eq
~13!:

W5
2aa3~t2t0!2

112aa2~t2t0!2 , ~15!
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wheret0 is an integration constant. This is the ‘‘algebraic
dark soliton solution. We have the conditionsa52b/3a,
3ag5b2, andd5b3/27a2.

~ii ! There are two single rootsW50 andb and double
root W5a.
s

In this case ‘‘potential function’’P(W) can be written as

P~W!5aW~W2a!2~W2b!, ~16!

when 0,W,b anda.b.0. The real solution in Eq.~13!:
W5

bF12
2a2b

2~a2b!
tan2fG6bS F12

2a2b

2~a2b!G
2

1
a

a2b F12
~2a2b!2

4a~a2b!
tan2f G tan2f D 1/2

2F12
~2a2b!2

4a~a2b!
tan2f G , ~17!
r

wheref5Aaa(a2b)(t2t0). We have the conditions

3a212
b

a
a1

g

a
50,

b522a2
b

a
,

and

d5aa2S 2a2
b

a D .

~iii ! There is one single rootW50 and three single root
W5a, b, andc.

In this case the ‘‘potential function’’P(W) can be written
as

P~W!5aW~W2a!~W2b!~W2c!, ~18!

whena.b.c.0.
For c.W.0 we have the solution

W5
acsn2

„A2a~a2c!b~t2t0!,k…

a1c@sn2
„A2a~a2c!b~t2t0!,k…21#

, ~19!
wherea51 andb, c, k are given by

b,c5~2,1 !
1

2 S 11
b

a D6F1

4 S 11
b

a D 2

1
d

aG1/2

,

k5S ~a2b!c

~a2c!bD 1/2

,

respectively, and sn is the Jacobian elliptic function. Foa
.W.b we have the solution

W5
~a2b!c sn2

„A2a~a2c!b~t2t0!,k…

~a2b!sn2
„A2a~a2c!b~t2t0!,k…2~a2c!

,

~20!

wherea, b, c, andk are the same as above.
~b! In the case when there are two real rootsW50, a and

a pair of conjugate complex rootsW56 ib.
~i! In this case ‘‘potential function’’P(W) can be written

as

P~W!5W~W2a!~W21b2!. ~21!

When 0<W<a, there is a real solution for Eq.~13!,
l

W5
ab@12cn„A2a~a21b2!b~t2t0!,k…#

b@12cn„A2a~a21b2!b~t2t0!,k…#1Aa21b2@11cn„A2a~a21b2!b~t2t0!,k…#
. ~22!

~2! a,0.
~a! All four roots of the polynomialP(W) are real.
~i! There is a single rootW50 and a triple rootW5a. In this case, it is impossible forP(W),0 so there is no rea

solution for Eq.~13!.
~ii ! There are two single rootsW50 andb and double rootW5a. In this case ‘‘potential function’’P(W) can be written

as

P~W!5W~W2a!2~W2b!. ~23!

When 0<b,W,a, there is a real solution for Eq.~13!,

lnFa2b22a2W12aW22bW222Aa~a2b!AW~W2a!2~W2b!

~W2a!2 G5A2aa~a2b!~t2t0!, ~24!
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for simplicity, we letb50. We have

W5
a

2
sechFa

2
A2a~t2t0!GexpF6

a

2
A2a~t2t0!G .

~25!

~iii ! There are four single rootsW50, a, b, andc. In
this case, it is impossible forP(W). So there is no rea
solution for Eq.~13!.

~b! In the case when there are two real rootsW50, a, and
a pair of conjugate complex rootsW56 ib. In this case, it
is impossible forP(W),0. So there is no real solution fo
Eq. ~13!. It is important to remember that for all the solution
above we should replacet by h~z,t! of Eq. ~9! in order to
find the amplitudeV(z,t) of Eq. ~7!.

In all the discussion above we considereddÞ0. As we
know, the boundary conditions in whichV andVt vanish as
t→6` are very important in the sense of temporally loc
ized solutions and this means hered50. We are now going
to show that in this case we can find an analytical solut
that is a generalization of an early result in the literature@6#
in which we depict its asymmetric nature due to the se
steepening term. Later we use this solution to show the sh
formation and calculate the critical distance in which t
shock occurs.

Without loss of generality we can assume again that
peak of the pulse is located att50, i.e., V(0)5V0 and Vt
50. We also haveP(V0)50, which specifies the constantk
as follows:

k5 1
2 sa0

21 1
2 ~12sa0!V0

21 1
6 a2~s2sa2!V0

4. ~26!

For the NLSE the value assumed byk is 1
2 obtained by the

inverse scattering method and in this case the freque
scanning is zero. We recover this result in Eq.~26! as ft
50 (a050, a250) and alsos50 ~in this case MNLSE
goes into the NLSE! where we madeV051 for the normal-
ized pulse.

For a potential well to exist betweenV50 andV5V0 the
coefficient ofV2 in Eq. ~12! must be negative, i.e.,

s~2k2sa0
2!,0. ~27!

The formal solution of Eq.~12! is found after some alge
braic manipulations as

V2~z,t!5
V0

2

22y Fcosh2~mh!1
y21

22y G21

, ~28!

where

m252s~12sa0!V0
22 1

3 sa2~s2sa2!V0
4,

~29!

y52
s

m2 ~12sa0!V0
2,

andh is defined by Eq.~9!. The results obtained in Eqs.~7!,
~28!, and ~29! are the ones from which we will make a d
tailed analysis showing under which conditions we can
trieve earlier results of the literature, as well as new on
We can see from Eqs.~9! and ~28! that in the anomalous
regime (s521) for a2523s/2 we recover the results o
-

n

-
ck

e

cy

-
s.

Ref. @6#. We can still emphasize some features of the o
tained solution described by Eq.~28!. Forn50, for example,
we have from Eq.~16! thata051/s and the amplitude in this
case goes as a square root of the conventional sech-typ
lution, whereas fory51 ~a250 or a25ss! the amplitude
has the usual sech-type behavior. This means that in g
from y51 to y50 the input pulse width which satisfies Eq
~28! is shorter than the conventional solution. For the co
ventional nonlinear Schro¨dinger equation ‘‘bright’’ and
‘‘dark’’ solitons exist depending on whethers571, respec-
tively. In our solution the condition for the existence of
bright soliton in the normal regime (s511) becomes

11
a2

3
~s2a2!,sa0 , ~30!

where use of Eqs.~26! and~27! was made. This implies tha
in a medium in the normal regime we can still propagate
bright soliton provided Eq.~30! in the anomalous regime
(s521) is

11
a2

3
~s1a2!.sa0 . ~31!

The conditions set by Eqs.~30! and~31! will be important
in the determination of the possible values of the parame
a0 . The phase is easily found from Eqs.~8! and ~28! and is
given by

f~z,t!5kz1a0t1
a2V0

2

mA12n

3tan21@A12n tanh~mh!#1
a2

2
~3s22sa2!

3V0
4z@~22y!cosh2~mh!1y21#22. ~32!

FIG. 1. Plot of normalized intensity versus time from Eq.~28!
with a050.2, s50.2, anda2520.2. z is the position along the
fiber, showing the shift, the asymmetry, and the self-steepenin
the pulse. The quantities plotted are dimensionless.
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Once again we see from Eqs.~32! that we recover the
phase of Ref.@6# whena2523s/2 for the anomalous regim
(s521). Figure 1 depicts the results of Eqs.~9!, ~28!, and
~29! where the pulse asymmetry leading to shock format
occurs, using parameters typical of current experiments@2#.
The shock formation occurs because the peak of pulse m
slower than its trailing edge, but without a whole shift of t
envelope.

For a250 and arbitrarya0 there is an asymmetry and th
dispersion is unable to prevent the shock formation. In t
case one should notice that, unlike the dispersionless c
the whole envelope is shifted.

IV. SHOCK FORMATION AND CRITICAL DISTANCE
OF PROPAGATION

As we saw in Sec. III, the presence of the last term of E
~1!—the self-steepening term—is responsible for the asy
metric behavior of our solutions. This self-steepening c
develop the formation of an optical shock understood as
extremely sharp rear edge seen in Fig. 1. In this section
calculate the critical distance of propagation for shock f
mation of the solution described by Eq.~28! with the condi-
tion thatVt becomes infinite at the shock position. From E
~7! we find

Vt5
~d f /dh!

11~3s22sa2!z~d f2/dh!
. ~33!

The condition for shock formation is then obtained from E
~33! and the critical distancezcr is determined whend f2/dh
is a maximum, i.e.,

zcr52
1

3s22sa2

1

~d f2/dh!max
. ~34!

The maximum ofd f2/dh is calculated from Eq.~28! yield-
ing for zcr

zcr5
g~y!

8mV0
2~3s22sa2!

, ~35!

whereg(y) is given by
L.

ev
n

es

is
se,

.
-

n
n
e

-

.

.

g~y!5
@3y1A9y2232y132#2

@2~3y228y18!12yA9y2232y132#1/2
. ~36!

As we saw in Sec. III, fora2523s/2 in the anomalous
regime (s521), we recover the results of Ref.@6# in which
the pulse propagates symmetrically and consequently the
no shock formation. This is clearly corroborated by our E
~35! wherezcr→` ~no shock formation! when a2523s/2,
s521. From Eq.~35! sincezcr.0 and all other parameter
involved are positive we have the conditions fora2 :a2>
23s/2 (s521) and a2<3s/2 (s511), and this set a
range fora2 depending on the self-steepening parametes.
Therefore we conclude that the conditions of Eqs.~30!, ~31!
anda2>3s/2, a2<23s/2, respectively, set a region of pos
sible values of the parametersa0 anda2 that are compatible
with our solution. Finally, as we said before, the se
steepening term creates an optical shock on the trailing e
of the pulse. This is due to the intensity dependence of
group velocity that results in the peak of the pulse mov
slower than the wings (s521). As a result this manifests
besides the asymmetric behavior, through a shift of the pu
center. This shift can be described by the delay timetd(z)
that can be calculated from Eq.~7! makingh50 and taking
V2(z,td)5V0

2 as the peak of the pulse. We have then
td(z)

td~z!5@2sa01~3s22sa2!V0
2#z. ~37!

For s521, a2523s/2, anda05s we recover the nu-
merical result of Ref.@6# in which the delay time has the
behaviortd(z)5sz for s,0.3. From our result described b
Eq. ~37!, we observe that the peak does not move (td50)
for a012a2523s with V051.

Concerning the results presented in this paper it is imp
tant to mention that the main difference between our
proach and that of Ref.@15# is related to the choice of the
variableh, i.e., in their case,h5t2a0z while ours is given
by Eq. ~9!.

ACKNOWLEDGMENTS

Financial support for this research by CNPq, FINE
CAPES, and FACEPE, Brazilian agencies, is gratefully
knowledged.
t.

.

@1# A. Hasegawa and F. Tappet, Appl. Phys. Lett.23, 142 ~1973!;
23, 1171~1973!.

@2# G. P. Agrawal,Nonlinear Fiber Optics, Quantum Electronics
Principles and Applications Series~Academic, New York,
1989!.

@3# L. A. Ostrovskii, Zh. Eksp. Teor. Fiz.51, 1189 ~1967! @Sov.
Phys. JETP24, 797 ~1967!#.

@4# F. De Martini, C. H. Townes, T. K. Gustafson, and P.
Kelley, Phys. Rev.164, 312 ~1967!.

@5# D. Grischkowsky, E. Courtens, and J. A. Amstrong, Phys. R
Lett. 31, 422 ~1973!.

@6# D. Anderson and S. Lisak, Phys. Rev. A27, 1393~1983!.
.

@7# R. L. Fork, C. V. Shank, C. Hirlimann, and X. Yen, Opt. Let
8, 1 ~1983!.

@8# N. Tzoar and M. Jain, Phys. Rev. A23, 1266~1981!.
@9# E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V

N. Serkin, Pis’ma Zh. Eksp. Teor. Fiz.42, 74 ~1985! @JETP
Lett. 42, 87 ~1985!#.

@10# W. Zhao and E. Bourkoff, IEEE J. Quantum Electron.QE-24,
365 ~1988!.

@11# G. R. Bayer and M. A. Franco, Opt. Lett.14, 465
~1989!.

@12# J. T. Manassah, inThe Supercontinuum Laser Source, edited
by R. R. Alfano~Springer-Verlag, Berlin, 1989!, Sec. V.



tt

4756 57JAIRO R. de OLIVEIRA AND MARCO A. de MOURA
@13# G. Yang and R. Shen, Opt. Lett.9, 510 ~1984!.
@14# B. R. Suydam, inThe Supercontinuum Laser Source~Ref.

@12#!, Sec. VI.
@15# Xu Bingzhen and Wang Wenzheng, Phys. Rev. E51, 1493

~1995!.
@16# W. J. Tomlisom, R. H. Stolen, and A. M. Johnson, Opt. Le
 .

10, 457 ~1985!.
@17# J. E. Rothenberg and D. Grischokowsky, Phys. Rev. Lett.62,

531 ~1989!.
@18# J. E. Rothenberg, J. Opt. Soc. Am. B6, 2392~1989!.
@19# K. Kaup and A. Newell, J. Math. Phys.19, 798 ~1978!.
@20# J. R. de Oliveiraet al., J. Opt. Soc. Am. B9, 2025~1992!.


